Math 245B Lecture 12 Notes

Daniel Raban

February 4, 2019

1 Banach Space Constructions

1.1 Product spaces

Definition 1.1. Let $(\mathcal{X}, \|\cdot\|_{\mathcal{X}})$ and $(\mathcal{Y}, \|\cdot\|_{\mathcal{Y}})$ be normed vector spaces over K. The **Cartesian product** $\mathcal{X} \times \mathcal{Y}$ is a normed space with one of many possible norms:

1. $||(x,y)|| := \max(|x||_{\mathcal{X}}, ||y||_{\mathcal{Y}})$

2.
$$||(x,y)|| := |x||_{\mathcal{X}} + ||y||_{\mathcal{Y}}$$

3.
$$||(x,y)|| := \sqrt{||x||_{\mathcal{X}}^2 + ||y||_{\mathcal{Y}}^2}.$$

Remark 1.1. There are many natural options for what norm to use; not all of them are listed here. However, from a category theory perspective, none of these are "natural."

Proposition 1.1. With any of these norms, $\mathcal{X} \times \mathcal{Y}$ is complete if and only if both \mathcal{X} and \mathcal{Y} are complete.

1.2 Quotient spaces

Definition 1.2. Let $(\mathcal{X}, \|\cdot\|)$ be a normed space over K, and let $\mathcal{M} \subseteq \mathcal{X}$ be a vector subspace. The **quotient space** is $\mathcal{X}/\mathcal{M} = \{x + \mathcal{M} : x \in \mathcal{X}\}$ with the **quotient norm** $\|x + \mathcal{M}\| := \inf\{\|y\| : y \in x + \mathcal{M}\}.$

Lemma 1.1. If \mathcal{X} is complete and $\mathcal{M} \subseteq \mathcal{X}$ is a closed subspace, then \mathcal{X}/\mathcal{M} is complete.

Proof. Suppose $(x_n + \mathcal{M})_{n=1}^{\infty} \in \mathcal{X}/cM$ is a sequence such that $\sum_{n=1}^{\infty} ||x_n + \mathcal{M}||$. For each n, pick $y_n \in x_n + \mathcal{M}$ such that $||y_n|| < ||x_n + \mathcal{M}|| + 2^{-n}$. Then $\sum_{n=1}^{\infty} ||y_n|| < \infty$, so there exists some $y = \sum_{n=1}^{\infty} y_n \in \mathcal{X}$. So $||y - \sum_{n=1}^{N} || \to 0$ as $N \to \infty$. This is an element of $(y + \mathcal{M}) - \sum_{n=1}^{N} (y_n + M) = (y + \mathcal{M}) - \sum_{n=1}^{N} (x_n + M)$. So

$$\left\| (y + \mathcal{M}) - \sum_{n=1}^{N} (x_n + M) \right\| \le \left\| y - \sum_{n=1}^{N} \right\| \to 0.$$

1.3 Bounded linear maps

Definition 1.3. A linear map $T : \mathcal{X} \to \mathcal{Y}$ is called **bounded** if there exists some $C < \infty$ such that $||T_x||_{\mathcal{Y}} \leq C ||x||_{\mathcal{X}}$ for all $x \in \mathcal{X}$. The vector space of bounded linear maps is called $\mathcal{L}(\mathcal{X}, \mathcal{Y})$.

Proposition 1.2. Let $T : \mathcal{X} \to \mathcal{Y}$ be linear. The following are equivalent:

- 1. T is continuous.
- 2. T is continuous at 0.
- 3. T is bounded.

Proof. (1) \implies (2): This is a special case. (3) \implies (1): For all $x, x' \in \mathcal{X}$, we have

$$||Tx - Tx'||_{\mathcal{Y}} = ||T(x - x')||_{\mathcal{Y}} \le C||x - x'||_{\mathcal{X}}.$$

(2) \implies (3): For every $\varepsilon > 0$, there exists a $\delta > 0$ such that

$$||x||_{\mathcal{X}} < \delta \implies ||T_x||_{\mathcal{Y}} < \varepsilon.$$

So for all $x \in \mathcal{X} \setminus \{0\}$, let $x' = \frac{\delta}{2\|x\|_{\mathcal{X}}}$. Then $\|x'\|_{\mathcal{X}} < \delta$. Then

$$||Tx'||_{\mathcal{Y}} = \frac{\delta}{2||x||_{\mathcal{X}}} ||Tx||_{\mathcal{Y}} < \varepsilon \implies ||T_x||_{\mathcal{Y}} < \left(\frac{2\varepsilon}{\delta}\right) ||x||_{\mathcal{X}}.$$

Lemma 1.2. If $S, T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$, say with constants C_S, C_T , then $S + T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ with constant at most $C_S + C_T$, and $\lambda S \mathcal{L}(\mathcal{X}, \mathcal{Y})$ with constant $\leq |\lambda| C_S$

Proof.

$$||(S+T)x|| \le ||Sx|| + ||Tx|| \le (C_S + C_T)||x||.$$

Definition 1.4. $\mathcal{L}(\mathcal{X}, \mathcal{Y})$ is a normed space with the **operator norm**

$$||T||_{\rm op} = \inf\{C : ||Tx|| \le C ||x|| \,\,\forall x \in X\}.$$

Remark 1.2. Equivalently, we can define the operator norm as

$$\begin{aligned} \|T\|_{\mathrm{op}} &= \sup\{C : \|Tx\|_{\mathcal{Y}} : x \in \mathcal{X}, \|x\|_{\mathcal{X}} = 1\}. \\ &= \sup\left\{C : \frac{\|Tx\|_{\mathcal{Y}}}{\|x\|_{\mathcal{X}}} : x \in \mathcal{X} \setminus \{0\}\right\}. \end{aligned}$$

Proposition 1.3. If Y is complete, so is $\mathcal{L}(\mathcal{X}, \mathcal{Y})$.

Proof. Let $(T_n)_n$ be Cauchy in $\mathcal{L}(\mathcal{X}, \mathcal{Y})$. Then for all $x \in \mathcal{X}$, we have

$$||T_n x - T_m x||_{\mathcal{Y}} \le ||T_n - T_m||_{\mathrm{op}} ||x||_{\mathcal{X}} \xrightarrow{n, m \to \infty} 0,$$

so there exists a $\lim_n T_n x =: Tx$. Now show that $T \in L(\mathcal{X}, \mathcal{Y})$, and $||T_n - T||_{\text{op}} \to 0$. \Box

Remark 1.3. If $S \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ and $T \in \mathcal{L}(\mathcal{Y}, \mathcal{Z})$, then for all $x \in \mathcal{X}$,

$$||TSx||_{\mathcal{Z}} = ||T|| ||Sx||_{\mathcal{Y}} \le ||T|| ||S|| ||x||_{\mathcal{X}},$$

so $T \circ S \in \mathcal{L}(\mathcal{X}, \mathcal{Z})$, and $||T \circ S|| \leq ||S|| ||T||$. So $L(\mathcal{X}, \mathcal{X})$ is an algebra over \mathcal{K} , and it is a Banach algebra if \mathcal{X} is complete.

Definition 1.5. A linear operator $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ is **invertible** (or an **isomorphism**) if T^{-1} exists an and is an element of $\mathcal{L}(\mathcal{Y}, \mathcal{X})$.

1.4 Dual spaces and the Hahn-Banach theorem

Definition 1.6. The space $\mathcal{X}^* := \mathcal{L}(\mathcal{X}, K)$ is the **dual space**. Its norm is called the **dual norm**, and its elements are **bounded linear functionals**.

Theorem 1.1 (Hahn-Banach). Let $(\mathcal{X}, \|\cdot\|)$ be a normed space, let \mathcal{M} be a linear subspace, and let $f \in \mathcal{M}^*$. Then there exists $F \in \mathcal{X}^*$ such that $F|_{\mathcal{M}} = f$ and $\|F\|_{\mathcal{X}^*} = \|f\|_{\mathcal{M}^*}$.

We will prove this theorem next time. Instead, let's look at a consequence.

Theorem 1.2. If $\mathcal{M} \subseteq \mathcal{X}$ is a closed linear subspace and $x \in \mathcal{X} \setminus \mathcal{M}$, then there exists $f \in \mathcal{X}^*$ such that $f|_{\mathcal{M}} = 0$ but $f(x) \neq 0$. Moreover, we can take ||f|| = 1 and $f(x) = \inf_{y \in \mathcal{M}} ||x - y||$.

Proof. Let $\mathcal{N} = \mathcal{M} + Kx$. Let $\delta = \inf_{y \in M} ||x - y|| = \delta$. Define the function $g : \mathcal{N} \to K$ as $g(y + \lambda x) := 0 + \lambda \delta$. To show that g is well-defined and linear, note that

$$g((y + \lambda x) + (y' + \lambda' x)) = g((y + y') + (\lambda + \lambda')x) = (\lambda + \lambda')\delta.$$

For find the norm of g, we want $|g(y + \lambda x)| \leq ||y + x||$ for all y, λ . Scaling by a constant, we can assume $\lambda = 1$. Then we want $\delta = |g(y + x)| \leq ||y + x||$ for all $y \in \mathcal{M}$, which is true by definition. By the Hahn-Banach theorem, g has an extension $f \in \mathcal{X}^*$ with ||f|| = ||g|| = 1.